
LATTICE OPTIMIZATION FOR TOP-OFF INJECTION

Richard Talman

Laboratory of Elementary-Particle Physics,

Cornell University

Abstract

This paper discusses Higgs factory injection. Full en-

ergy, top-off injection is assumed. Vertical injection seems

preferable to horizontal and kicker-free, bunch-by-bunch in-

jection concurrent with physics running may be feasible.

Achieving high efficiency injection justifies optimizing in-

jector and/or collider lattices for maximum injection effi-

ciency. Stronger focusing in the injector and weaker focus-

ing in the collider improves the injection efficiency. Scal-

ing formulas (for the dependence on ring radius R) show

injection efficiency increasing with increasing ring circum-

ference. Scaling up from LEP, more nearly optimal param-

eters for both injector and collider are obtained. Maximum

luminosity favors adjusting the collider cell length Lc for

maximum luminosity and choosing a shorter injector cell

length, Li < Lc , for maximizing injection efficiency.

INJECTION STRATEGY: STRONG

FOCUSING INJECTOR, WEAK

FOCUSING COLLIDER

Introduction

I take it as given that full energy top-off injection will be

required for the FCC electron-positron Higgs factory. With-

out reviewing the advantages of top-off injection, one has to

be aware of one disadvantage. The cost in energy of losing a

full energy particle due to injection inefficiency is the same

as the cost of losing a circulating particle to Bhabha scat-

tering or to beamstrahlung or to any other loss mechanism.

Injection efficiency of 50% is equivalent to doubling the ir-

reducible circulating beam loss rate. To make this degrada-

tion unimportant one should therefore try to achieve 90%

injection efficiency.

Achieving high efficiency injection is therefore suffi-

ciently important to justify optimizing one or both of injec-

tor and collider lattices to improve injection. The aspect

of this optimization to be emphasized here is shrinking the

injector beam emittances and expanding the collider beam

acceptances by using stronger focusing in the injector than

in the collider. What are the dynamic aperture implications?

They will be shown to be progressively more favorable as

the ring radius R is increased relative to the LEP value. The

dynamic-aperture/beam-width ratio increases as R1/2 and

is the same for injector and collider. Before addressing this

optimization other injection issues will be surveyed.

Handling the synchrotron radiation at a Higgs Factory is

difficult and replenishing the power loss is expensive. Other-

wise the RF power loss is purely beneficial, especially for in-

jection. Betatron damping decrements δ (fractional ampli-

tude loss per turn) are approximatelyhalf the energy loss per

turn divided by the beam energy, (e.g. δ ≈ 0.5×2.96/120 =

1.25 %.) Also the energy dependence is large enough for in-

jection efficiency to improve significantly with increasing

energy.

According to Liouville’s theorem, increasing the beam

particle density by injection is impossible for a Hamiltonian

system. The damping decrement δ measures the degree to

which the system is not Hamiltonian. Usually bumpers and

kickers are needed to keep the already stored beam captured

while the injected beam has time to damp. If δ is large

enough one can, at least in principle, inject with no bumpers

or kickers.

Advantages of Vertical Injection and Bumper-

Free, Kicker-Free, Top-Off Injection

The most fundamental parameter limiting injection effi-

ciency is the emittance of the injected beam. The vertical

emittance in the booster accelerator can be very small, per-

haps ǫy < 10−10 m. This may require a brief flat top at

full energy in the booster. For injection purposes the beam

height can then be taken to be effectively zero. The next

most important injector parameter is the septum thickness.

For horizontal injection this septum also has to carry the

current to produce a horizontal deflection. Typically this re-

quires the septum thickness to be at least 1 mm. For vertical

injection, with angular deflection not necessarily required,

the septum can be very thin, even zero. The remaining (and

most important) injection uncertainty is whether the ring dy-

namic aperture extends out to the septum. If not, it may be

possible to improve the situation by moving the closed orbit

closer to the wall using DC bumpers. (However this may be

disadvantageous for vertical injection as vertical bends con-

tribute unwanted vertical emittance to the stored beams.)

A virtue of top-off injection is that, with beam currents al-

ways essentially constant, the linear part of the beam-beam

tune shift can be designed into the linear lattice optics. One

beam “looks”, to a particle in the other beam, like a lens

(focusing in both planes). Large octupole moments makes

this lens far from ideal. Nevertheless, if the beam currents

are constant the pure linear part can be subsumed into the

linear lattice model. And the octupole component, though

nonlinear, does not necessarily limit the achievable luminos-

ity very severely.

With injection continuing during data collection there

would be no need for cycling between injection mode and

data collection mode. This could avoid the need for the al-

ways difficult “beta squeeze” in transitioning from injection

mode to collision mode. Runs could then last for days, al-

ways at maximum luminosity. This would improve both av-

erage luminosity and data quality.



Kicker-free vertical injection is indicated schematically

in Figure 1. Let ninj. be a small integer indicating the num-

ber of turns following injection before the injected beam

threatens to wipe out on the injection septum. The frac-

tional shrinkage of the Courant-Snyder invariant after ninj.

turns is ninj.δ. By judicious choice of vertical, horizontal,

and synchrotron tunes this shrinkage may be great enough

that less than, say, 10 % of the beam is lost on the septum.
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Figure 1: A cartoon of kicker-free, vertical injection. The

dashed line shows the Courant-Snyder amplitude of the in-

jected particle with the fractional shrinking per turn drawn

more or less to scale.

CONSTANT DISPERSION SCALING

WITH BEND RADIUS R

Linear Lattice Optics

Most of the following scaling formulas come from Jowett

[1] or Keil [2] or from reference [3]. For simplicity, even

if it is not necessarily optimal, assume the Higgs factory

arc optics can be scaled directly from LEP values, which

are: phase advance per cell µx = π/2, full cell length

Lc = 79 m. (The subscript “c” distinguishes the collider

lattice cell length from the injector lattice cell length Li .)

At constant phase advance, the beta function βx scales as

Lc and dispersion D scales as bend angle per cell φ = Lc/R

multiplied by cell length Lc ;

D ∝ L2
c

R
. (1)

Holding Lc constant as R is increased would decrease the

dispersion, impairing our ability to control chromaticity.

Let us therefore tentatively adopt the scaling

Lc ∝ R1/2, corresponding to φ ∝ R−1/2. (2)

This can be seen to be tantamount to holding dispersion D

constant, and is consistent with electron storage ring design

trends over the decades.

These quantities and “Sands curly H”H then scale as

βx ∝ R1/2, D ∝ 1, H ∝ D2

βx
∝ 1

R1/2
. (3)

Copied from Jowett [1], the fractional energy spread is

given by

σ2
ǫ =

55

32
√

3

~

mec
γe , where

Fǫ =
< 1/R3 >

Jx < 1/R2 >
∝ 1

R
, (4)

and the horizontal emittance is given by

ǫ x =
55

32
√

3

~

mec
γeFx , where

Fx =
< H/R3 >

Jx < 1/R2 >
∝ 1

R3/2
. (5)

The betatron contribution to beam width scales as

σx,betatron ∝
√

βx ǫ x ∝ 1/R1/2. (6)

Similarly, at fixed beam energy, the fractional beam energy

(or momentum) spread σδ scales as

σδ ∝
√

B ∝ 1/R1/2. (7)

Scaling with R of Arc Sextupole Strengths and Dy-

namic Aperture

At this stage in the Higgs Factory design, it remains un-

certain whether the IP-induced chromaticity can be can-

celled locally, which would promise well over than a fac-

tor of two increase in luminosity, but would require strong

bends close to the IP. For the time being I assume the IP

chromaticity is cancelled in the arcs. Individual sextupole

strengths can be apportioned as

S = Sarc chr.
+ SIP chr. (8)

The IP-compensating sextupole portion SIP chr. depends on

the IP-induced chromaticity. A convenient rule of thumb

has the IP chromaticity equal to the arc chromaticity. By

this rule doubling the arc-compensating sextupole strengths

cancels both the arc and the IP chromaticity.

With dispersion D ∝ 1, quad strength q ∝ 1/R1/2,

and Sarc chr. ∝ q/D, one obtains the scaling of sextupole

strengths and dynamic aperture scaling;

S ∝ 1

R1/2
, and xdyn. ap. ∝ q

Sarc chr.
∝ 1. (9)

The most appropriate measure of dynamic aperture is

xdyn. ap.

σx

∝ 1

1/R1/2
∝ R1/2 . (10)

The increase of dynamic aperture divided by beam size with

increasing R would allow the IP optics to be more aggres-

sive for the Higgs factory than for LEP. Unfortunately it is



the chromatic mismatch between IP and arc that is thought

to be more important in limiting the dynamic aperture than

is the simple compensation of total chromaticity. The con-

stant dispersion scaling formulas derived so far are given in

Table 1.

INJECTION-OPTIMIZED SCALING FOR

INJECTOR AND COLLIDER

Revised Injector and Collider Parameters

What has been discussed so far has been “constant dis-

persion scalling”. But, as already stated, we wish to dif-

ferentiate the injector and collider optics such that the in-

jector emittances are smaller and the collider acceptances

are larger. This can be accomplished by shortening injec-

tor length Li and lengthening collider cell length Lc . The

resulting R-dependencies and scaling formulas are shown

in Table 2. They yield the lattice parameters in Table 3 for

both the 50 km and 100 km circumference options.

Implications of Changing Lattices for Improved

Injection

According to these calculations there is substantial advan-

tage and no disadvantage to strengthening the injector focus-

ing and weakening the collider focusing. This is achieved

by shortening the injector cell length Li and increasing the

collider cell length Lc . Weakening the collider focusing has

the effect of increasing the transverse beam sizes

As indicated in the caption to Table 3, the improvement

in the injector emittance/collider acceptance ratio is proba-

bly unnecessaily large, at least for a 100 km ring, where the

improvement is seven-fold.

Furthermore there is at least one more constraint that

needs to be met. Maximum luminosity results only when

the beam aspect ratio at the crossing point is optimal.

Among other things this imposes a condition of the hori-

zontal emittance ǫ x . At the moment the preferred method

for controlling ǫ x is by the appropriate choice of cell length

Lc . With lattice manipulations other than changing the cell

length it may be possible to increase, but probably not de-

crease ǫ x .

According to Table 3 of my WG 2 paper, “Ring Circum-

ference and Two Rings vs One Ring”, with β∗y = 5 mm the

optimal choice of ǫ x is 3.98 nm. According to Table 3 of

the present report the actual value will be ǫ x = 7.82 nm.

These values can be considered “close enough for now”, or

they can be considered different enough to argue that fur-

ther design refinement is required (which is obvious in any

case). But the suggestion is that the Lc = 213 m collider

cell length choice in this paper may be somewhat too long.

Unfortunately the optimal value of ǫ x depends strongly

on the optimal value of β∗y , which is presently unkown.

These considerations show that the arc and intersection re-

gion designs cannot be separately optimized. Rather a full

ring optimization is required.
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Parameter Symbol Proportionality Scaling

phase advance per cell µ 1

cell length L R1/2

bend angle per cell φ = L/R R−1/2

quad strength (1/ f ) q 1/L R−1/2

dispersion D φL 1

beta β L R1/2

tunes Qx ,Qy R/β R1/2

Sands’s “curly H” H = D2/β R−1/2

partition numbers Jx/Jy/Jǫ = 1/1/2 1

horizontal emittance ǫ x H/(Jx R) R−3/2

fract. momentum spread σδ
√

B R−1/2

arc beam width-betatron σx,β
√
βǫ x R−1/2

-synchrotron σx,synch. Dσδ R−1/2

sextupole strength S q/D R−1/2

dynamic aperture xmax q/S 1

relative dyn. aperture xmax/σx R1/2

pretzel amplitude xp σx R−1/2

Table 1: Constant dispersion scaling is the result of choosing cell length L ∝ R1/2. This is empasized by the shaded row,

where the 1 in the final column indicates constancy as the ring radius is changed. The table gives the scaling with R of

other lattice and beam parameters.

Parameter Symbol Proportionality L ∝ R1/4 L ∝ R1/2 L ∝ R3/4

injector collider

phase advance per cell µx 90◦ 90◦ 90◦

cell length L R1/4 R1/2 R3/4

110 m 153 m 213 m

bend angle per cell φ = L/R R−3/4 R−1/2 R−1/4

momentum compaction φ2 R−3/2 R−1 R−1/2

quad strength (1/ f ) q 1/L R−1/4 R−1/2 R−3/4

dispersion D φL R−1/2 1 R1/2

beta β L R1/4 R1/2 R3/4

tune Qx R/β R3/4 R1/2 R1/4

243.26 174.26 125.26

tune Qy R/β R3/4 R1/2 R1/4

205.19 147.19 106.19

Sands’s “curly H” H = D2/β R−5/4 R−1/2 R1/4

partition numbers Jx/Jy/Jǫ 1/1/2 1/1/2 1/1/2 1/1/2

horizontal emittance ǫ x H/(Jx R) R−9/4 R−3/2 R−3/4

fract. momentum spread σδ
√

B R−1/2 R−1/2 R−1/2

arc beam width-betatron σx,β =

√
βǫ x R−1 R−1/2 1

-synchrotron σx,synch. = Dσδ R−1 R−1/2 1

sextupole strength S q/D R1/4 R−1/2 R−5/4

dynamic aperture xda q/S R−1/2 1 R1/2

relative dyn. aperture xda/σx R1/2 R1/2 R1/2

separation amplitude xp σx N/A R−1/2 1

Table 2: To improve injection efficiency (compared to constant dispersion scaling) the injector cell length can increase

more weakly, for example Li ∝ R1/4, and the collider cell length can increase more strongly, for example Li ∝ R3/4. The

shaded entries assume circumference C=100 km, R/RLEP=3.75.



Parameter Symbol LEP(sc) Unit Injector Collider

mean bend radius R 3026 m 5675 11350 5675 11350

beam Energy 120 GeV 120 120 120 120

circumference C 26.7 km 50 100 50 100

cell length L 79 m 92.4 110 127 213

momentum compaction αc 1.85e-4 m 0.72e-4 0.25e-4 1.35e-4 0.96e-4

tunes Qx 90.26 144.26 243.26 105.26 125.26

Qy 76.19 122.19 205.19 89.19 106.19

partition numbers Jx/Jy/Jǫ 1/1.6/1.4 1/1/2 1/1/2 1/1/2 1/1/2

main bend field B0 0.1316 T 0.0702 0.0351 0.0702 0.0351

energy loss per turn U0 6.49 GeV 3.46 1.73 3.46 1.73

radial damping time τx 0.0033 s 0.0061 0.0124 0.0061 0.0124

τx/T0 37 turns 69 139 69 139

fractional energy spread σδ 0.0025 0.0018 0.0013 0.0018 0.0013

emittances (no BB), x ǫ x 21.1 nm 5.13 1.08 13.2 7.82

y ǫy 1.0 nm 0.25 0.05 0.66 0.39

max. arc beta functs βmax
x 125 m 146 174 200 337

max. arc dispersion Dmax 0.5 m 0.37 0.26 0.68 0.97

quadrupole strength q ≈ ±2.5/Lp 0.0316 1/m 0.027 0.0227 0.0197 0.0117

max. beam width (arc) σx =
√

2βmax
x ǫ x 1.6

√
2 mm 0.865

√
2 0.433

√
2 1.62

√
2 1.62

√
2

(ref) sextupole strength S = q/D 0.0632 1/m2 0.0732 0.0873 0.0290 0.0121

(ref) dynamic aperture xda ∼ q/S ∼0.5 m ∼0.370 ∼0.260 ∼0.679 ∼0.967

(rel-ref) dyn.ap. xda/σx ∼0.313 ∼0.428 ∼0.600 ∼0.417 ∼0.621

separation amplitude ±5σx ±8.0
√

2 mm ±8.1
√

2 ±7.8
√

2

Table 3: Lattice parameters for improved injection efficiency. The shaded row indicates how successfully the injector

emittance has been reduced relative to the collider emittance. The factor of seven improvement, 7.82/1.08, in this ratio for

a 100 km ring, seems unnecessarily large, indicating that less radical scaling should be satisfactory.


